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1 Introduction
In this paper we consider the monotone linear complementarity problems
Find (z,y) € R® x R" such that y = Mz +¢q, (z,y)>0, 2aly=0, (1.1)

where ¢ € R™, and M € R™"*"™. Many optimization problems can be formulated as monotone linear

complementarity problems including the linear programming problem. We write (1.1) as

F(z,y) = ( Mx;yy€+ 1 ) =0, (1.2)

and

(z,y)>0 (1.3)

where X = diag(z) and Y = diag(y). Let S denotes the solution set of problem (1.1). A solution
pair (z,y) is said to satisfy strict complementarity if in addition to complementarity XYe = 0, it
satisfies  + y > 0. For problem (1.1), we will be interested in the following three subsets of the
index set {1,...,n}

B = {i:zf> 0 for at least one (z*,y*) € S}.

N = {i:yF > 0 for at least one (2, y*) € S}.

J = {i:z¥=yr=0forall (2*,y) € S}
It is clear that B, A/, and J form a partition of {1,...,n}.

In general, for monotone linear complementarity problems solutions that satisfy strict comple-
mentarity may not exist. However, for linear programming problems, the existence of solutions that
satisfy strict complementarity was proved by Goldman and Tucker [6]. In this case, all solutions
in the relative interior of the solution set satisfy strict complementarity, see for example El-Bakry,
Tapia and Zhang [2] and we have 7 =0, BUN = {1,...,n},and BN N = 0.

For linear programming many indicators function for identifying members of B and A have been
proposed. This information can be used to computational advantages in interior-point methods.
A thorough study for this issue can be found in El-Bakry, Tapia, and Zahng [2]. In this paper we
are concerned with identifying members of B, N, and 7. We consider three indicators for that
purpose. The variables used as indicators, the primal-dual indicator, and the Tapia indicators.
The variables used as indicators are perhaps the most widely used indicators in computational
optimization. The primal-dual indicators are also used for the purpose of identifying the above
subgroups of variables, particularly in the context of primal-dula interior-point methods, see for
example Gay [4], Ye [12], and Lustig [8]. Monteiro and Wright [10] proposed the use of the
primal-dual indicator in the context of degenerate monotone complementarity problems. The Tapia

indicators were proposed by Tapia [11] for the identification of active and inactive constraints



for general constrained optimization problems. The Tapia indicators were used by El-Bakry [1]
and Mehrotra [9]. Their convergence properties, in primal-dual interior-point methods for linear
programming, was studied in El-Bakry, Tapia, and Zhang [2]. The convergence of the Tapia
indicators in the absence of strict complementarity has not been studied.

The motivation for studying the Tapia indicators in this context is that solutions that satisfy
strict complementarity may not exist in general complementarity or optimization problems. One
example is the monotone linear complementarity problem (1.1). Another interesting example is a
class of problems arising from the control of some elasto-dynamic systems, see for example [5].

In this paper, we prove that the Tapia indicators corresponding to variables with indices in 7,
i.e. variables that do not satisfy strict complementarity at every solution (z*,y*) € §, actually
converge. This result is a direct consequence of the work of Monteiro and Wright [10]. It should
be noted that this result holds only for feasible-iterate algorithms, whereas the convergence of the
Tapia indicators when strict complementarity holds does not require feasibility. We also establish
a convergence rate of the Tapia indicators in this context. Finally we study the convergence and
convergence rate for the variables used as indicators and the primal-dual indicators.

This paper is organized as follows; in Section 2, a generic algorithm is introduced and the Tapia
indicators and their convergence properties for linear programming problems are stated. We also
define two widely used indicators in interior-point methods, namely the variables used as indicators
and the primal-dual indicator. In Section 3 we establish a convergence result for the Tapia indicators
corresponding to variables with indices in 7. We also study the convergence and the convergence
rate for the three indicators. A result concerning the performance of interior-point methods in the
existence of solutions that do not satisfy strict complementarity is also presented. We present some

numerical experiments in Section 4. Final conclusions are given in Section 5.

2 The Algorithm and Indicators

A generic primal-dual Newton interior-point method for problem 1.1 has the following structure.

Algorithm 2.1 (Primal-Dual Interior-Point Method)

Given a strictly feasible starting point (z°,y%). For k =0,1,..., do
1. Choose o* € (0,1) and set pu(z,y) = O‘k@)fl.
2. Solve the following system for (Az*, Ayk):
F'(*, y*)(Az, Ay) = —F(a*, ") + p(a, y*)é (2.1)

3. Choose T* € (0,1) and set the steplength o = min(1, 75a&*) where
~k -1

o = .

min((X*5)-1Axk (YF)=1Ayk, _%)




4. Form the new iterate
(@1, 1) = (2F oF) + oF Ak, AyF).

Observe that since (29, y°) is strictly feasible, all the subsequent iterates are also strictly feasible.

We make the following assumptions.
(A1) (=")Ty* — 0.
(A2) zFyF > 3(zF)Ty* for all i = 1,...,n and for some positive constant 7.

Now, we state three indicators, the variables used as indicators, the primal-dual indicator and,

the Tapia indicators for problem (1.1).

The Variables:
V(zF) = 2F, and V(y*) = ¢*.

The Primal-dual indicator:
PD(a*,y") = (Y*) 1k,

where Y* = diag(y*).

The Tapia indicators:

.’171?+1
T(zt) = ;f
and k41
T(yF) = L,
Y

where ¢¥t! = :vf + aFAzF and yf“ =gk + akAyf.

i
For the sake of completeness we include El-Bakry, Tapia, and Zhang [2] convergence result for

the Tapia indicators for linear programming problems.

Proposition 2.1 (El-Bakry-Tapia-Zhang) Let the sequence of iterates {(z*,y*)} be generated

by Algorithm 2.1 applied to the linear programming problem. Under the conditions
1. § is bounded,
2. («F)Ty* — o,
3 min!XkYke!

@ > v for all k and some positive constant v,

4. 0F =0and > 1



then fori=1,.

)
0 fieN
tim T(ah)={ 0 UE
k—oo ifie bl
and
icB
lim T(h) = { 0 YT

where z*t! = 2% + BFAz and y*t1 = y* + BFAy for any % € [oF, 1], where oF is given by
Algorithm 2.1.

An example that demonstrates the behavior of the primal Tapia indicator for AFIRO, one of the
Netlib [3] set of test problems, is given in Figure 1.
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Figure 1: The Tapia primal indicator for all variables in AFIRO.

3 Convergence in the Absence of Strict Complementarity

One interesting property of the Tapia indicators is that their 0-1 separation property holds component-
wise, i.e. if a pair (z},y;), j € NV satisfies strict complementarity, then the 0-1 separation property
holds for that pair even if other pairs do not satisfy strict complementarity.

In a recent paper, Monteiro and Wright [10] considered interior-point methods for degenerate

monotone complementarity problems (problems of the form (1.1) where the solution set S may not



contain a solution that satisfies strict complementarity). It is satisfying that as a direct consequence

of their result, we are able to prove convergence of the Tapia indicators for pairs (z;,y;), j € J.

Lemma 3.1 Let {(z*,4*)} be a sequence generated by Algorithm 2.1 and that Assumptions (A1)-
A(2) hold. Assume further that

1. the centering parameter is chosen such that o* — 0.

2. lime* — & € (0,1].

Then
l—a ifieN
klgr;oT(xf) =8 1-¢ ifieJ
1 ifi € B
Moreover
IT(zf) - 1| < C(/(z¥)Ty* + o*) for i € B, (3:2)
and

IT(ab)] < COJ(@)Ty* + o) fori € A, (3:3)

Proof: Let ¢ € B, then

k+1 k
lim = lim (1+ o kl ).
k—o00 z; k—o0 x;

But from Lemma 2.2 and Lemma 4.4. of Monteiro and Wright [10],
2F > ¢y and AzF = O([(«F)Ty*)Y/? + oF) for i € B,

where (' is some positive constant. Thus

41
lim —— =1,
k—oo J;i
since (z¥)Ty* — 0 and ¢* — 0 by the assumptions of the lemma. From the linearized complemen-
tarity
Aziyi + Ayiz; = —aiy; + oz’ y,
we have k1 k1 Tk
xT. 14 &€ Y~
L4 yzk — (2_(Xk)+ako,k( k) kJ
ot Y; T7Ys
Therefore
ylc+1
lim 20— =1-~a
k00 Y,
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From symmetry we have, for i € N,

=1-a.

From Lemma 4.5 in Monteiro and Wright [10] we have

k
Jlim A;; = —% forie J. (3.4)
Hence, for ¢« € 7, we have
. k1 . k Ak
limg oo = limgeo(l 4+ @ ?‘-)

1 T

= 1-4

Now from Lemma 4.4. of Monteiro and Wright [10] we have, for ¢ € B,

< é(\/(wk)TZk + (rk).

It is easy to see that the same result is also true for T,-(yk) with « € . Now we have, for i € N,

Azk

&
&

ITi(z%) - 1] < oF

ITi(=*)| < ITi(y*) = 1] + O(®),

which implies that
ITi(z)] < C(\/(x%)T 2 + o*) for i € V.

and completes the proof.

Lemma 3.1 states that the Tapia indicators converge if o — a. It is not clear, however, that
the sequence {a*} converges in many interior-point algorithms for problem (1.1). Nevertheless,
{a*} is usually constructed to be bounded in (0,1). So liminfs_.., o exists. In this case a similar

proof to that of Lemma 3.1 gives

l—a ifieN
1imki3£oT(mf)= 1-% ifieJ
1 ifieB
where o = liminfy_,o, a®. Therefore as long as there is at least one limit point o of {«*} that is
not very small, the sequences {T(z¥)} accumulates around three reasonably distinguished values
l—a,1- %, and 1 corresponding to variables with indices in A/, 7, and B respectively. This shows
that the Tapia indicator sequence gives a reasonable identification criterion even if the steplength
sequence does not converge. On the other hand, a better convergence property can be obtained if
the definition of the Tapia indicator is slightly modified changed as follows

k4 Aak
zk

)

?




and

yf + Ayt
T(?/f) = A
Y;
In this case we have
0 ifieN
Jim T(zH) =< 1/2 ifie T
1 ifieB

Remarks:
e The convergence rate results (3.2) and (3.3) also hold for T(y¥) for i € .

e Assume that o* = O[(2*)Ty*] in Algorithm 2.1. From (3.2), (3.3), and Theorem 2.6 of
Monteiro and Wright [10] we conclude that the convergence rate of the Tapia indicators, for
i € BUN,is at least R-linear. This result is weaker than the rate obtained by El-Bakry, Tapia,
and Zhang [2]. As we will see in the numerical experimentation, although the Tapia indicators
demonstrate a slow local rate of convergence, they give a reasonable early identification of

the status of the variables.

The following corollary is a direct result of the Lemma 3.1 and concerns with the convergence

and rate of convergence of both the variables used as indicators and the primal-dual indicator.

Corollary 3.1 Let {(z*,y*)} be a sequence generated by Algorithm 2.1 such that Assumptions
(A1)-(A2) hold. Assume further that

1. the centering parameter is chosen such that o* — 0.
2. limo* — & € (0,1].

Then for all i € N, both the variables as indicator V() and the primal-dual indicator PD(z,y)
converges to zero Q-linearly with Q-factor 1 — &, and for all i € J, V(2) converges to zero
Q-linearly with Qq-factor 1 — %

Moreover, if o* — 1 then for i € N, both V(z) and PD(x,y) converges to zero Q-superlinearly,

and for all i € J, V(z) converges to zero Q-linearly with Q1-factor %

Proof: The proof follows from Lemma 3.1 and the fact that the Tapia indicator Tj(z¥) is the
Q1-factor for both {z*} and {z¥/y*}.

It is worth mentioning that while the variables used as indicators converge for variables with
indices in J, the convergence of the primal-dual indicator has not been yet established for these
variables. The best that has been proved for those variables is that their primal-dual indicators

are bounded. This conclusion follows directly from Lemma 2.4 of Monteiro and Wright [10]. This



fact lead Monteiro and Wright [10] to propose the use of the primal-dual indicators only to predict
members of A" and B in their finite termination technique. An example of the behavior of the
three indicators is given in the next section. The example actually suggests that the primal-dual
indicators for variables in 7, if they converge, do not converge to meaningful limits that can be
used early in the algorithm to detect the existence of variables (z;,¥;), i € J.

Montiero and Wright [10] proved that the convergence rate of {(2*)Ty} is at most Q-linear if
J # 0. They also note that the Q;-factor in this case is less or equal 1/4 if o®* — 1. A final result
concerning the rate of convergence of Algorithm 2.1 follows from Lemma 3.1, and is given in the
following proposition. This result states that the best @;-factor that can be obtained in this case
is 1/4.

Proposition 3.1 Let {(z*,4*)} be a sequence generated by Algorithm 2.1 such that Assumptions
(A1)-(A2) hold. Assume further that

1. J#0.
2. the centering parameter is chosen such that oF — 0.
3. limg_oo & — 1.

Then the the sequence {(z*)Ty*} converges to zero Q-linearly with Q,-factor 1/4.

Proof: From Theorem 4.1 in Monteiro and Wright [10], the @,-factor of {(2*)Ty*} is given by

(o) ()T
k

S H k
Q1= kli»n;o sup |1 —a" + 5 )Ty (3.5)
which implies, under Condition 3, that
1
@1 < 1 (3.6)
From Lemma 3.1, we have
at]-c'*'lyk"'l 1
lim —*——%— = —forallic J. (3.7)
k—oco  @iY; 4

Consider the Q;-factor of the sequence {#%} where 6% = 3, s akyk.

gty

k - 1 i i
Q:1({07}) = limsup;_ fiejx'}y:;“'
—1 k+1, k41 -1
— I k., k ry Y k. k
= Um suPpog [Tier (Sjpics o505) e ]/[Zz‘e:f (Zjsier ohvk) ]’
> . eftyEtt Y g
2  HMk—oo Mg 7 Eok - 3

Ty,

(3.8)
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gEHL
since all the sequences {—‘—‘—} for ¢ € 7, converges to 1/4 by (3.7). It is also clear from

Lemma 3.1 that

H{CSUN —» 0 g-superlinearly |

where

OBUN'_ Z '1: yz‘
1EBUN

Now consider the Q;-factor of {(z*)Ty*},

k+1 k+l
lim supy_, o, Z s

Q1({(=")Ty*})

sc’lL(L ’l
k+1+0 +1

= lim Supk—’mw (3.9)

o k+1
lim supy_, o, o L/ (l + >

v

Since {0 } converges to zero Q-linearly with Qq-factor at least 1/4, then for sufficiently large k we

have
ok-}-l
jk—— >7>0
07
which implies that
k
OBU./\/ 0
k
03

Therefore _
QU 2 1
From (3.6) and the last relation, we obtain the desired result.

This proposition asserts that, for degenerate monotone linear complementarity problems, the
best Q-factor of the sequence {||F(z*,y*)||1}, where {(z*,y*)} is generated by Algorithm 2.1. is
1/4. The existence of even one pair (z;,y;), 7 € J adversely slows down the algorithm regardless
of how fast other variables approach zero. This fact will be numerically demonstrated in the next

section.

4 Numerical Example

In the following experiment, a perturbed Newton interior-point algorithm is used. The algorithm
is coded in MATLAB. A problem is said to be solved to an accuracy of 10~¢, for some positive
integer d, if the algorithm stops with || F(z*,y*)||2 < 10~%. The problem that is considered here
is solved to an accuracy of 1078, The parameter o in Algorithm 2.1 is chosen such that o* — 0.

The iterates generated by the code are not necessarily feasible with respect to the linear equations

10



Mz — y + q. The experiments were performed on a Sun SPARCstation 10 Model 41 with 128
Megabytes of memory running SunOS 4.1.3.
An example of a problem with a solution that does not satisfy strict complementarity is the
following
minimize (21 + 3z2 + 23)% + 4(z1 + 22)?
subjectto 1—xzy —x9—23=0
6w2+4w3—m?—w4—3:0

(1’1, Lo, T3, J‘I‘l) Z 0

(4.10)

This is problem number 32 in the Hock and Schitkwoski [7] set of test problems. Figure 2.1
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Figure 2: The Tapia indicator for all variables in problem #32.

demonstrates the behavior of the Tapia indicators for the all variables in the problem. We note
that x4 is a slack variable added to the original inequality constraints. The algorithm gives the point
(6.26 x 10~°,0,0.999,0.997) as an approximate solution to the problems. The Lagrange multipliers
corresponding to the inequality constraints are (5.01 x 107%,3.999,0,0). Hence both z; and the

k1.

corresponding multiplier are zero at the solution. We note that for this example we have «
The behavior of the Tapia indicator predicted by Lemma 3.1 is clearly demonstrated where the
Tapia indicator corresponding to a3 converges to 0.5.

A comparison between the three indicators is given in Table 1 for this problem. The first

column gives the iteration number. The second column gives the Tapia indicator for the variable

11



[ Iteration number | Ty (%) | Ti(v%) | ak yE | b Jyk |
1 1.4096e+00 | 1.8187e+00 [ 1.0000e-01 | 1.9791e+01 | 5.0528e-03
2 1.0678e+00 | 6.3976e-02 | 1.4096e-01 | 3.5994e+01 | 3.9161e-03
3 6.5954e-01 | 5.1126e-01 | 1.4882e-01 | 8.2617e+00 | 1.8013e-02
4 8.3130e-01 | 3.1037e-01 | 9.8153e-02 | 4.2239¢+00 | 2.3238e-02
5 7.3057e-01 3.7558e-01 | 8.1708e-02 | 1.3310e+00 | 6.1391e-02
6 5.2704e-01 5.0405¢-01 | 5.9693e-02 | 4.9987e-01 | 1.1942e-01
7 5.0107e-01 | 5.0053e-01 | 3.1461e-02 | 2.5196e-01 | 1.2486e-01
8 5.0006e-01 | 5.0004e-01 | 1.6002e-02 | 1.2803e-01 | 1.2499e-01
9 5.0001e-01 | 5.0000e-01 | 8.0022e-03 | 6.4018e-02 | 1.2500e-01
10 5.0000e-01 | 5.0000e-01 | 4.0084e-03 | 3.2067e-02 | 1.2500e-01
11 5.0000e-01 | 5.0000e-01 | 2.0042e-03 | 1.6034e-02 | 1.2500e-01
12 5.0000e-01 | 5.0000e-01 | 1.0021e-03 | 8.0168e-03 | 1.2500e-01
13 5.0000e-01 | 5.0000e-01 | 5.0105e-04 | 4.0084e-03 | 1.2500e-01
14 5.0000e-01 | 5.0000e-01 | 2.5053e-04 | 2.0042e-03 | 1.2500e-01
15 5.0000e-01 | 5.0000e-01 | 1.2526e-04 | 1.0021e-03 | 1.2500e-01

Table 1: Several indicators in the absence of strict complementarity

x1 while the third gives the Tapia indicator for the corresponding multiplier 4. The fourth and
fifth columns give the value of the variables x1 and y; respectively, while the sixth column gives the
value of the primal-dual indicator z1/y;. From the table we can see that although the variables z,
and y; both converges to zero, none of them is “sufficiently” small until iteration 10. In fact both
7, and y; are not small enough even when the algorithm terminates. On the other hand, although
the primal-dual indicator z/y seems to converge to 0.125, its terminal value is meaningless. On
the contrary, both Tapia indicators converge, as the theory predicts, to 0.5. Observe also that they
converge relatively early (starting from iteration 6). We note here that at iteration 6, the residual
|[Mz — y + gl| is 107%, i.e. the iterates are close to the feasibility region.

Observe that, in Figure 2, the Tapia indicator corresponding to the zero variable z; is small but
not close to zero. This is due to the fact that the Tapia indicator corresponding to this variable
converges to zero slowly, as predicted by the theory. Observe, however, that it gives an early
identification of the states of z, at the solution. In Table 2 the Tapia indicator corresponding to z,
is given. The first column gives the iteration number (the code terminated successfully at iteration
15) for the last 6 iterations. The second column gives the Tapia indicator for the zero variable when
o = O(||F(z*,4")||3). Tt is clear that the convergence of the Tapia indicator to zero is slow. The
third column gives the values of the same indicator when o = O(]|F(z*, y*)||4). The convergence to

zero is obviously faster. In fact it seems that the Tapia indicator T; 2(;17’“) convergence to zero linearly

12



with a @Q;-factor close to 0.50. This means that zero components, either in z or y, converges faster
to zero. It is interesting, however, to observe that, the algorithm itself was still slow (it took the
same number of iteration in both cases). Another interesting point to observe is that in both cases
the @Qq-factor of the residual sequence is approximately 1/4, see columns 4 and 7. Other runs with

tighter stopping criterion also support our observation. In all cases the best ();-factor we obtained

was 1/4. In all cases a* — 1. This performance is predicted by Proposition 3.1.

Tteration & = IFG*, I o = IF G5 I
number | relative Tapia Ql-factor | relative Tapia Q1l-factor
residual | indicator | of residual | residual | Indicator | of residual
10 3.21e-05 | 1.9410e-02 | 2.4884e-01 | 4.90e-05 | 4.9492e-03 | 2.5521e-01
11 8.03e-06 | 1.6790e-02 | 2.5016e-01 | 1.24e-05 | 2.4869e-03 | 2.5306e-01
12 2.01e-06 | 1.6458e-02 | 2.5031e-01 | 3.11e-06 | 1.2465e-03 | 2.5081e-01
13 5.02¢-07 | 1.6060e-02 | 2.4975e-01 | 7.78e-07 | 6.2397e-04 | 2.5016e-01
14 1.26e-07 | 1.5854e-02 | 2.5100e-01 | 1.95e-07 | 3.1208e-04 | 2.5064e-01
15 3.14e-08 | 1.5742e-02 | 2.4921e-01 | 4.87e-08 | 1.5605e-04 | 2.4974e-01

Table 2: Tapia indicator for two choices of o*

5 Conclusion

The convergence and the convergence rate of the Tapia indicators for feasible-iterate interior-point
methods for monotone linear complementarity problems is established when strict complemen-
tarity does not hold. It is shown that the Tapia indicators converge at least R-linearly to their
terminal value. The convergence rate for the variables used as indicators and the primal-dual in-
dicator corresponding to zero variables is also established. Another result concerning the behavior
of interior-point methods in the presence of solution that do not satisfy strict complementarity
follows form Proposition 3.1. This proposition asserts that the best Ji-factor of the sequence
{(z*)Ty*} is 1/4. The convergence of the Tapia indicators for infeasible-iterate methods is still

under investigation.
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